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Does three-dimensional incompressible Euler flow with smooth initial condi-
tions develop a singularity with infinite vorticity after a finite time? This blowup
problem is still open. After briefly reviewing what is known and pointing out
some of the difficulties, we propose to tackle this issue for the class of flows
having analytic initial data for which hypothetical real singularities are preceded
by singularities at complex locations. We present some results concerning the
nature of complex space singularities in two dimensions and propose a new
strategy for the numerical investigation of blowup.

KEY WORDS: Euler equation; turbulence; blow-up; complex singularities.

1. PHENOMENOLOGY OF BLOWUP

According to Richardson’s ideas on high Reynolds number three-dimen-
sional turbulence, energy introduced at the scale a0, cascades down to a
scale g ° a0 where it is dissipated. Consider the total time Ta which is the
sum of the eddy turnover times associated with all the intermediate steps of
the cascade. From standard phenomenology à la Kolmogorov 1941 (K41),
the eddy turnover time varies as a

2/3. If we let the viscosity n, and thus g,
tend to zero, Ta is the sum of an infinite convergent geometric series. Thus
it takes a finite time for energy to cascade to infinitesimal scales, an obser-
vation first made by Onsager. (1) We also know that in the limit n Q 0, the
enstrophy, the mean square vorticity, goes to infinity as n−1 (to ensure a
finite energy dissipation).



From such observations, it is tempting to conjecture that ideal flow,
the solution of the (incompressible) 3-D Euler equation

“tv+v · Nv= − Np, (1)

N · v=0, (2)

when initially regular, will spontaneously develop a singularity in a finite
time.

This is of course incorrect: the kind of phenomenology assumed above
is meant only to describe the (statistically) steady state in which energy
input and energy dissipation balance each other; the inviscid (n=0) initial-
value problem is not within its scope. Another possible argument in favor
of singularities has to do with the scaling properties of the high Reynolds
number solutions (e.g., the k−5/3 spectrum). For the simpler case of the
Burgers turbulence, (2) the scaling of spectra and structure functions is
clearly rooted in the singularities (shocks) appearing in the solutions in
the limit of vanishing viscosity. It is however well-known that power-law
behavior can be present without any singularities. An example is the
Holtsmark process, that is any component of the electric or gravitational
field produced at a given point by a set of charges or masses with an initial
Poisson distribution in space and moving with uniform independent iso-
tropic velocities (having, e.g., a Gaussian distribution). It is then easily
shown (by adaptation of the technique used by Chandrasekhar (3)) that the
correlation function is 3 |t − tŒ|−1. This power-law behavior comes from
the algebraic distribution of the distances of closest approach to the point
of measurement and not from singularities of individual realizations (which
are actually analytic).

There is yet another phenomenological argument, not requiring K41,
which suggests finite-time blowup of the vorticity. Consider the equation
for the vorticity w — N N v for inviscid flow, written as

Dtw=w · Nv, (3)

where Dt — “t+v · N denotes the Lagrangian derivative. Observe that Nv has
the same dimensions as w and can be related to it by an operator involving
Poisson-type integrals. (For this use the fact that N2v=−N N w.) It is then
tempting to predict that the solutions of (3) will behave as the solution of
the scalar nonlinear equation

Dts=s2, (4)

which blows up in a time 1/s(0) when s(0) > 0. Actually, (4) is just the sort
of equation one obtains in trying to find rigorous upper bounds to various
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Fig. 1. Simulation of the formation of a vorticity pancake at four different times from ref. 5.

norms when studying the well-posedness of the Euler problem. This is pre-
cisely why the well-posedness ‘‘in the large’’ (i.e., for arbitrary t > 0) is an
open problem in three dimensions.

The evidence is that the solutions of the Euler equation behave in a
way much tamer than predicted by (4) because of a phenomenon known
as ‘‘depletion of nonlinearity:’’ when small-scale structures appear through
the nonlinear dynamical evolution from smooth initial data, they tend to
display, at least locally, a much faster dependence on one particular spatial
direction, so that the flow is to leading order one-dimensional. (4) An
example in three dimensions are the vorticity pancakes seen in simulations,
as illustrated in Fig. 1. If the flow were exactly one-dimensional, the
nonlinearity would vanish (as a consequence of the incompressibility
condition).

Depending on how strong this depletion is and also on how persistent
it is, finite-time blowup may or may not occur. (6, 7)

A review of the known mathematical results concerning the initial
value problem for the Euler equation may be found in ref. 8. We just
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mention a few salient facts. In two dimensions, for sufficiently smooth
initial data in a bounded domain (including periodic boundary conditions)
or with sufficiently fast decay at large distances, Hölder continuity of the
vorticity is preserved for all times. The key result was actually obtained
in 1933. (9, 10) In three dimensions, for sufficiently smooth initial data,
regularity is guaranteed only for a finite time. The first such result goes
back to 1925. (11) A very important result, established in the late eighties by
Beale, Kato, and Majda (BKM) is that blowup, if it takes place, requires
the time-integral of the supremum of the vorticity, and hence the vorticity
itself, to become infinite. (12) As pointed out in ref. 8, the main stumbling
block in trying to improve the existing 3-D regularity results beyond a
finite time is our still very rudimentary understanding of the mathematics
of depletion. It is worth stressing here that an even partial progress on
depletion could play a crucial role in understanding regularity issues for the
3-D Navier–Stokes equation. (13)

Numerical studies of 3-D blowup have been going on since at least the
seventies with the development of spectral methods. (14) The advantage of
spectral methods is that they allow the kind of very high accuracy which
is desirable in investigating possible singular behavior. When spectral
methods were able to achieve fairly high resolutions (2563 or more grid
points), evidence for depletion emerged, possibly of sufficient strength to
prevent blowup (15) (see also Section 3). It was however realized that sin-
gularities (or near singularities) of the 3-D Euler are highly localized in
space and that the kind of uniform grid used in standard spectral methods
is very wasteful. A number of new methods were developed using nonuni-
form, e.g., adaptive meshing and often rather special initial conditions.
Such studies have provided some evidence for blowup, based on extra-
polating the behavior in time of the supremum of the vorticity. For the
convenience of the reader we give a list of the key references (provided to
us by R. Pelz and R. Kerr). It is not our purpose here to review such
work.

We shall argue in this paper that there exists a class of analytic flows
for which numerical studies of blowup can probably be carried out with
sufficient control to distinguish genuine and spurious numerical blowup.
In Section 2, we recall some known facts about the Euler equation in the
complex domain. In Section 3, we first recall how to detect precursors of
blowup by tracing complex space singularities with a spectral method; then
we propose a new spectral adaptive approach capable, in principle, to
resolve highly localized singularities. For this method it can be crucial to
have information about the nature of complex space singularities. Sections 4
and 5 report preliminary results concerning the singularities of the Euler
equation in two space dimensions. Section 6 presents concluding remarks.
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2. ANALYTICITY OF SOLUTIONS TO THE EULER EQUATION

We are here interested in solution of the d-dimensional Euler equation (2)
with real analytic initial data v0, extended into the complex domain,
a question addressed also in refs. 16 and 17. For simplicity, we assume
‘‘periodic boundary conditions,’’ that is space periodicity with period 1
in all d coordinates (although we use 2p when discussing numerical
results). The configuration space is thus C̃d — Td+iRd, where Td is the
d-dimensional periodicity torus. The analytic continuation of the solution
to C̃d is denoted v(z, t), where z — x+iy (we do not complexify the time
variable).

We now give a brief survey of some key results for the Euler equation
in the complex domain. Since this paper is intended mostly for a readership
of fluid dynamicists, physicists and numerical analysts, we shall avoid using
excessively formal mathematical language but, of course, distinguish clearly
what is truly proven from what is just conjectured.

The first results about analyticity of the solution to the Euler equation
have been obtained, to the best of our knowledge, in the seventies. With
periodic boundary conditions, analyticity assumed initially, is preserved for all
time in two dimensions (18) and at least for a finite time in three dimen-
sions. (19, 20) The simplest derivations of such results are obtained by using
Lagrangian methods. (21, 22) One follows complex characteristics, the solu-
tions of ż=v(z, t), in order to control the width d(t) of the ‘‘analyticity
strip,’’ that is the distance from the real domain of the nearest singularity in
C̃d for the solution at time t.

What singles out two dimensions is that vorticity is conserved along
the characteristics (as it is in the real domain). The key estimate used to
prove all-time analyticity is that when d(t) > s and 0 < s < 1, one has

|Im v(x+iy, t)| [ Bs ||w( · , t)||s |y| ln
1
|y|

, (5)

||w( · , t)||s — sup
|y| [ s, x ¥ T

2
|w(x+iy, t)|, (6)

where Bs — C1+C2(ln(1/s))−1 and C1 and C2 are positive constants. This is
a consequence of the Biot–Savart law relating the velocity and the vorticity.
Actually, (5) is mostly a reworking in the complex domain of an estimate
obtained in refs. 9 and 10 for proving all-time regularity in the real domain.
It follows from (5) and vorticity conservation that, if initially d(0) > s, at
any later time the width of the analyticity strip has a double exponential
lower bound d(t) > sexp(Bs ||w0||s t). Hence analyticity holds for all times, but
complex singularities can get arbitrarily close to the real domain.
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In three dimensions, vorticity is not conserved since it can be stretched
by velocity gradients. As a consequence, very poor control of d is available
and its vanishing after a finite time cannot be ruled out. Still, it is easy
(but a bit technical) to show that, if at some time t0 the solution is
analytic, it will stay so in a (possibly small) time interval [t0, t0+Ta[.
Furthermore it was shown by Benachour and Bardos that, if d(t0) > s then,
in this time interval, one has the square root lower bound d(t) >
(s/2)(1 − (t − t0)/Ta)1/2. (20–22) One important consequence, is that: In three
dimensions with periodic boundary conditions and analytic initial conditions,
analyticity is preserved as long as the velocity is continuously differentiable
(C1) in the real domain. (21) The BKM theorem (cf. Section 1) allows us to
strengthening this result: analyticity is actually preserved as long as the
vorticity is finite.

As long as d > 0 the Euler equation can be written not only in the real
domain but directly in the complex domain. In particular we shall find it
useful to write it on ‘‘parareal domains.’’ By this we understand a domain
of the form Td+iy for fixed y such that |y| < d, i.e., obtained from the real
(periodic) domain Td by a fixed imaginary shift. In such a domain the
velocity field is complex. By separating the velocity and the pressure into
real and imaginary parts, v=vr+ivi and p=pr+ipi, we can rewrite the
Euler equation on a parareal domain as

“tvr+vr · Nvr − vi · Nvi=−Npr, (7)

“tvi+vr · Nvi+vi · Nvr=−Npi, (8)

N · vr=0, N · vi=0. (9)

Note that Eqs. (7)–(9) have some similarity to the magnetohydrodynamics
(MHD) equations, with vr and vi playing the role of the velocity field and
the magnetic field, respectively. The main differences are the following:
(i) the presence of a pressure term in the second equation (there is no such
term in the MHD induction equation); (ii) if we linearize the equation
around a uniform vi, we do not obtain Alfvén-like waves but an instability
whose growth rate is proportional to the wavenumber. The interpretation
of this instability is that the imaginary translation induced by an imaginary
velocity corresponds to an exponential factor in Fourier space (rather than
a phase factor which would be associated to a real translation). We also
observe that a real-imaginary decomposition similar to (7)–(9) has been
used in ref. 23 for the Navier–Stokes equation in the complex domain (in
order to estimate the space analyticity radius of solutions in terms of Lp

and L. norms of initial data).
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The proof of the local-in-time analyticity result of ref. 19 is easily
extended to the Euler equation in a parareal domain with analytic initial
data in both two and three dimensions. All-time analyticity is now ruled
out, even in two dimensions, since complex space singularities will generally
cross after a finite time any parareal domain as they approach the real
domain.

A consequence of local-in-time analyticity is that the width of the
analyticity strip d(t) cannot decrease discontinuously in time. This is a con-
sequence of the Benachour–Bardos square root lower bound on d(t) given
above. In particular if there is finite-time blowup, that is d(t) vanishes at
some ta, the vanishing takes place continuously: real singularities do not
come out of the blue (but out of the complex). This observation has led to
the introduction of the method of tracing complex space singularities
discussed in the next section.

Note that similar results about finite-time analyticity and continuity
of d(t) can be obtained without periodic boundary conditions, provided
the solutions decrease sufficiently fast at large distances. (22) However, if
the solutions are not well behaved at infinity the results may be wrong.
A counterexample, due to S. Childress and E. Spiegel (quoted in ref. 24), is
given by

v(x1, x2, x3, t)=1x2+x3

t − ta
,

x3+x1

t − ta
,

x1+x2

t − ta

2 , (10)

p(x1, x2, x3, t)=−
x2

1+x2
2+x2

3

(t − ta)2 . (11)

3. TRACING COMPLEX SINGULARITIES

As suggested in refs. 2 and 25, when the initial data for the Euler equa-
tion are analytic (and periodic), it is possible to trace the temporal behavior
of the width of the analyticity strip d(t) in order to obtain evidence for or
against blowup. This takes advantage of the signature of complex space
singularities in Fourier space. In one dimension, it is well known that an
analytic function having isolated singularities in the complex plane has a
Fourier transform whose modulus decreases at large wavenumbers k as
exp(−dk) (up to algebraic prefactors), where d is the distance from the real
domain of the nearest complex space singularity. (26, 27)

So far, nothing was known concerning the nature of complex space
singularities of the multi-dimensional Euler equation. In more than one
dimension, singularities in the complex domain are never point-like. For
example, it may be shown that for the d-dimensional (potential) inviscid
Burgers equation with analytic initial data, the singularities in the complex
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domain (before shock formation) are on (d − 1)-dimensional complex
manifolds, a result which cannot be ruled out for the Euler equation. In
Fourier space, consider wavevectors of the form k=kk̂ where k̂ is unit
vector of fixed direction. For fixed t, it may then be shown that, as k Q .,
the modulus of the Fourier transform decreases as exp(−d(k̂, t) k) where d

now depends on the direction. The width of the analyticity strip at time t is
then the minimum of d(k̂, t) over all directions.

The numerical tracing of complex singularities is easy if the Euler
equation is integrated by a (pseudo-)spectral method (28) with enough
spatial resolution to capture the exponential tails in the Fourier transforms.
This method was applied for the first time to the three-dimensional Euler
flow generated by the Taylor–Green initial conditions (15)

v1=sin x1 cos x2 cos x3,

v2=−cos x1 sin x2 cos x3,

v3=0.

ˇ (12)

The simplest is then to plot for various times the ‘‘energy spectrum’’
E(k, t), that is the angle-averaged squared modulus of the Fourier trans-
form of the velocity. By a steepest descent argument one has (up to alge-
braic prefactors) E(k, t) 3 exp (−d(t) k). This is illustrated in Fig. 2, taken
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Fig. 2. Spectral simulation of the inviscid Taylor–Green vortex using 2563 Fourier modes.
(a) Evolution of the energy spectrum in lin–log coordinates; from bottom to top: output from
time t=0.5 in increments of 0.5. (b) Time-dependence of the width of the analyticity strip d(t)
in linear–log coordinates; the circles and plus signs correspond to 2563 and 1283 Fourier
modes, respectively; the dashed line gives the threshold of reliability (from ref. 15).
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from ref. 15, giving for the first time evidence that the Taylor–Green vortex
may actually not have any blowup since d(t) appears to decrease exponen-
tially in time. This behavior is observed reliably over an interval of time
during which d(t) decreases by about one decade. Later work, extending
the simulations from a 2563 to a 8643 grid, have confirmed this behavior
over a range of one and a half decade in d (see Fig. 3 taken from ref. 5).

The Taylor–Green vortex may just happen not to be a good candidate
for blowup. It is special in at least two ways. First, it has a lot of symmetry
(used to simplify the computation). Second, its vortex lines have non-
generic topology: they are closed instead of displaying the KAM disorder
that is typical of the integral lines of three-dimensional divergenceless
vector fields. General periodic flow not displaying such pathologies has
also been investigated in ref. 5. It seems to give exponential shrinking of d,
but over just about half a decade in d. Two causes for this reduced range
are clear: the limited resolution permitted ten years ago for flow without
symmetry (2563) and a crossover phenomenon between two different small-
scale structures localized at different spatial locations, resulting into two
different regimes with a changeover around t=1.05 (cf. Fig. 3).

Fig. 3. Width of the analyticity strip d(t) from a spectral simulation of a periodic flow with
no particular symmetry. Dashed line data are for 2003 modes and solid line data for 2563

modes (from ref. 5).
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If we could simulate general periodic flow in such a way as to observe
the variation of d over several decades we would probably be able to get
good evidence for or against blowup. One way to achieve this is just
‘‘patience.’’ We can indeed expect to gain a little more than a factor four
in spatial resolution every ten years: this requires an increase in CPU power
of 44=256, made possible by Moore’s law. Another way is to renounce
spectral methods and switch to adaptive methods. Unfortunately, such
methods had so far only finite-order accuracy and could not be used to
analytically continue the solutions into the complex domain, so that we
must renounce measuring d(t).

We propose here a new strategy, the ‘‘spectral adaptive’’ method
which combines the highly localized refinement permitted by adaptive
methods with full contact to the complex space structure. This method,
which is still in the testing phase, will only be briefly outlined here. The
basic idea is to run a standard spectral simulation until the latest time tB

when d(t) can be measured with very high accuracy and then to perform a
‘‘regularizing analytic transformation’’ B on C̃3 with the following proper-
ties: (i) it preserves T3 globally and thus preserves periodicity, (ii) it maps
the complex singularities of the solution at time tB away from R3 (possibly
to complex infinity). In the new coordinates resulting from the transforma-
tion B, the problem is still periodic and can again be integrated by a suit-
able spectral method (with new difficulties since the coefficients are now
strongly non-uniform). The procedure can, in principle, be repeated several
times. The spectral adaptive strategy is yet to be fully implemented. So far,
we have performed tests in one space dimension on the Burgers equation.
These have revealed that, in order to minimize errors, it is best to perform
the regularizing transformation around the time when the round-off noise
just disappears from the tail of the spatial Fourier transform of the solu-
tion, which is a function of the resolution and of the round-off level
(cf. Fig. 4).

For one-dimensional equations, complex singularities are point-like
and we know simple transformations which have the required properties.
In higher dimensions, singularities are on extended objects and their nature
is not well known. A possible candidate for the regularizing analytic trans-
formation B could be the inverse Lagrangian map between time tB and the
initial time (also called back-to-labels map (7)). This is definitely the case for
the Burgers equation in any dimension, whose solution stays entire in
Lagrangian coordinates if the initial condition is entire, that is analytic in
the whole complex domain. However recent results for the two-dimensional
incompressible Euler equation, the details of which will be published
elsewhere, indicate that entire initial conditions develop complex-space
singularities in both Eulerian and Lagrangian coordinates.
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Fig. 4. Evolution of the modulus of the Fourier transform for the solution of the one-
dimensional Burgers equation with initial condition u0(x)=sin x, for which the first real sin-
gularity is at t=1. Around t=0.82 round-off noise disappears from the resolved spectral
range. A rather moderate resolution of 1024 modes is used in order to make the round-off
noise fluctuations more visible.

Note that the two-dimensional case is not just an academic problem,
as one might infer incorrectly from the proven fact that 2-D Euler flow
never blows up. One reason is that there is evidence that 2-D Euler flow is
much tamer than predicted by the double exponential lower bound for d(t)
given in Section 2. Indeed, spectral simulations indicate that d(t) is actually
decreasing exponentially (25) and that there is strongly depleted nonlinearity.
Another reason is the existence of two-dimensional variants of the Euler
equation for which blowup has still not been ruled out, such as axisymme-
tric flow with swirl or 2-D free convection. (29–32)

To find suitable candidates for the analytic transformation B in two
dimensions we would like to know something about the complex singulari-
ties of two-dimensional Euler flow with analytic initial conditions. This is
the subject of the next section.

4. NUMERICAL STUDY OF COMPLEX SINGULARITIES FOR 2-D

EULER FLOW

Spectral simulations of 2D Euler flow with analytic initial conditions
give very strong evidence for the presence of complex space singularities
through the presence of exponential tails in the Fourier transforms of the
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solution. Can we find out something about the nature of such singularities?
One way is to analytically continue the solution at time t to complex loca-
tions, using the Fourier series. Suppose we have the Fourier representation

v(x, t)=C
k

e ik · xv̂k(t), (13)

we can just substitute z=x+iy for x and obtain v(z, t) as long as the series
converges, that is for y < d(t). Alternatively, we can analytically continue
the initial condition to the parareal domain T2+iy (a square in the 2D
case) and then integrate the parareal Eqs. (7)–(9) from 0 to t. Mathemati-
cally, the two procedures are equivalent since they differ only by an imagi-
nary translation, that is an overall exponential factor e−k · y. Their numerical
implementations in high-resolution spectral simulations may however not
be equivalent, because of the presence of roundoff noise. At early times,
when d(t) can be quite large, the exponential falloff of the Fourier trans-
form reaches roundoff noise level for wavenumbers which are much smaller
than the maximum wavenumber permitted by the simulation (cf. Fig. 5).
If we multiply this by the exponential factor e−k · y, roundoff noise may
be tremendously amplified (for k · y < 0). If we directly integrate in the
parareal domain we can, at each time step, identify and set to zero the
modes which are affected by roundoff, a procedure closely related to that
used by Krasny for integration of the vortex sheet problem. (33) As t increa-
ses, these modes will shift to higher wavenumbers, eventually reaching the
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Fig. 5. Angle average, at a given time, of the modulus of the Fourier transform of velocity
in lin-log coordinates. The exponential falloff reaches here the roundoff noise level for wave-
numbers of the order of 350, while the maximum wavenumber kmax determined by the 2/3
dealiasing rule is 682 for a resolution of 20482.
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maximum wavenumber permitted by the resolution. We are then effectively
making better use of the available resolution. We call this procedure
parareal integration with noise suppression. This method is rather crude
and might be improved by taking into account the strong anisotropy
present near a singularity.

We have used this method to integrate the two-dimensional parareal
Euler equation using from 5122 to 20482 modes and initial conditions
which are trigonometric polynomials in the space coordinates and thus
entire functions. (As we shall see later, such initial conditions are also
amenable to a short-time expansion.) The cleanest results are obtained
when the initial condition v0(x) has only two modes

v0(x)=(“2k0(x), −“1k0(x)), (14)

k0(x)=cos(x1)+cos(2x2), (15)

where k(x, t) is the stream function and “1 and “2 are the derivatives with
respect to x1 and x2.

Figures 6 and 7 show the real part of the vorticity w — − N2k at the
latest time when the behavior in the parareal domain is still sufficiently
smooth to be unaffected by truncation, that is when the complex singulari-
ties are not too close to the parareal domain chosen. It is seen that the
solution in the near-singular region is almost one dimensional and hence
has strongly depleted nonlinearity. The structure of the region of high vor-
ticity gradients suggests that the singular set is a smooth curve. A cross
section of the vorticity in the near-singular region is shown in Fig. 8; a blowup
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Fig. 6. Snapshot of the contours of the real part of vorticity in the parareal domain
y=(2p/64)(cos p/6, −sin p/6) just before the appearance of a singularity.
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Fig. 7. Enlargement of Fig. 6 showing the contour lines of the real part of vorticity in the
neighborhood of the location where the singularity appears.

of the region of highest vorticity (cf. Fig. 9) shows about one decade of an
approximately one-over-square root behavior (exponent − 1/2) of the vor-
ticity when crossing the singular manifold. This implies some range of
square-root behavior for the velocity.

To check on errors due to truncation and filtering we changed the
resolution from 5122 to 10242 and 20482 modes without changing any of
the physical parameters (but, of course, adapting the time step to the
spatial mesh). The results differed by less than the filtering level, a good

-8

-6

-4

-2

0

2

4

6

-5 -4 -3 -2 -1 0 1 2 3 4 5

vo
rt

ic
ity

s

real part
imaginary part

Fig. 8. Real and imaginary parts of vorticity along the cut represented as a dashed line on
Fig. 6. Both real and imaginary parts of vorticity display quasi-singular behavior near
s=−1.2 and s=0.
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Fig. 9. Real part of the vorticity along the cut shown on Fig. 8 in log-log coordinates.
A range of algebraic behavior can be seen.

indication of reliability. We also tried to extend the scaling range at the
higher resolutions by chosing a slightly later output time, so as to let the
singularities move closer to the parareal plane. In fact, the scaling range
did not increase appreciably, perhaps because of roundoff problems. We
cannot therefore ascertain that the vorticity truly diverges with exponent
− 1/2 when approaching the singular set.

5. ASYMPTOTIC ANALYSIS OF 2-D COMPLEX SINGULARITIES

In ref. 34 the following result was established: the inviscid one-dimen-
sional Burgers equation with initial conditions which are trigonometric
polynomials in the space variable has, at short real times, square root
branch point singularities for the velocity, which are within a distance
d(t) 3 ln(1/t) of the real domain. It was also briefly pointed out that the
ln(1/t) law can probably be extended to the 3-D Euler equation with initial
conditions which are trigonometric polynomials in the space variables
(such as the Taylor–Green flow). Further results on complex singularities
for the Burgers equation may be found in refs. 35 and 36.

We now show that the same law applies to the 2-D Euler equation at
short times and, furthermore, we give a consistency argument shedding
some light on the square root behavior reported in the previous section.
For simplicity we shall limit ourselves to the two-mode initial condition
(15) used in the previous section, although most of the arguments can be
generalized to arbitrary trigonometric polynomials.
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We start with the 2-D Euler equation written in stream function for-
mulation

“t N2k=J(k, N2k), (16)

where J(f, g) — “1 f “2 g − “1 g “2 f. It is easily shown that (16) has a solu-
tion in the form of a temporal Taylor series

k(x, t)= C
n \ 0

kn(x) tn, (17)

where k0 is the initial condition and the kn(x)’s for n \ 1 are defined
recursively by

N2kn+1=
1

n+1
C

m+p=n
J(km, N2kp). (18)

For the two-mode initial condition k0(x)=cos(x1)+cos(2x2), it is easily
checked that kn+1 is a trigonometric polynomial which, when written in
terms of complex exponentials, involves only modes of the form e ipx1+2iqx2

where p and q are signed integers such that |p|+|q| [ n+1. Each term can
now be continued from real x to complex z=x+iy=(z1, z2).

Trigonometric polynomials are instances of entire functions. Hence,
initially, d=. and, by continuity, d(t) will be large at small real times.
Singularities will thus be present only for suitably large |y|. For large posi-
tive y1 and y2, the dominant contributions to kn(x+iy) have p < 0 and
q < 0. (For our special choice of initial conditions, symmetry arguments
make it unnecessary to examine the other three sign quadrants in the y
plane.) When y1 Q +. and y2 Q +., the dominant terms in kn(z) are of
the form

kn(z) 4 C
n

k=1
bn

ke−i[kz1+2(n+1 − k) z2], (19)

where the complex coefficients bn
k satisfy suitable recursion relations, not

needed here. If we formally keep only those dominant terms in (17), we
obtain

k(z, t) 4
1
2

(e−iz1+e−2iz2)

+
1
t

C
n \ 0

C
n

k=1
bn

k(te−iz1)k (te−2iz2)n+1 − k. (20)
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We now let t Q 0 and simultaneously |y| Q . in such a way that te−iz1 and
te−2iz2 stay finite and we find that (i) all the terms in the Taylor expansion
stay finite and (ii) all the terms not included in (20) are subdominant. This
observation leads us naturally to making the asymptotic ansatz k(z, t) 4

(1/t) F(z̃) where

z̃=(z̃1, z̃2) — (z1+i ln t, z2+(i/2) ln t). (21)

Straightforward substitution into (16) leads to

Ñ2(−1+i“̃1+(i/2) “̃2) F=J̃(F, Ñ2F), (22)

where the overscript tilde means that the partial derivatives are taken with
respect to the new variables. The initial condition (15) becomes now a
boundary condition

F(z̃) 4 1
2 (e−iz̃1+e−2iz̃2), ỹ1 Q − ., ỹ2 Q − .. (23)

If (22) with this boundary condition has a unique solution possessing
complex space singularities at a finite distance from the real domain, then it
follows immediately from the change of variables (21) that d(t) 3 ln(1/t)
as t Q 0 in the original variables. We have recently checked numerically
that, for the 2-D flow with initial condition given by (15), this scaling law
holds over more than 8 decades, up to t % 0.1. Details will be published
elsewhere, together with numerical solutions of the asymptotic equation (22).

The numerical results of the previous section suggest that, for fixed t,
the singularities in C̃2 are located on one-dimensional complex manifolds,
near which the velocity has some range of square root behavior.

Using the short-time asymptotic equation (22), we show now that the
observed behavior is consistent with the two-dimensional Euler equation.
For this, assume that the (rescaled) stream function F(z̃) can be repre-
sented, at least approximately, as

F(z̃)=G(z̃)+Fa(z̃)+h.o.t., (24)

where G and F are analytic functions, a is a non-integer exponent, F (but
not G) vanishes on the singular manifold S and h.o.t. stands for ‘‘higher
order terms,’’ that is terms involving higher powers of F. The expansion
(24) is somewhat reminiscent of the singular expansion used in refs. 16 and
17, except that (i) we do not a priori suppose that the singular manifold
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F=0 moves with the flow and (ii) we shall determine the value of the
exponent a. Substituting (24) into (22), we obtain

Ñ2 1−1+i“̃1+
i
2

“̃2
2 G − J̃(G, Ñ2G)

=c[(“̃1F)2+(“̃2F)2] 5J̃(G, F) − i 1 “̃1+
1
2

“̃2
2 F6 Fa − 3

+a2(a − 1) J̃(F, (“̃1F)2+(“̃2F)2) F2a − 2+h.o.t., (25)

where c — a(a − 1)(a − 2). In (25) the most singular term near S is that
involving Fa − 3, which cannot be balanced by any other term. Hence, its
coefficient must vanish, thereby constraining the functions G and F to
satisfy J̃(G, F) − i(“̃1+1

2 “̃2) F=0. For non-integer a, the term involving
F2a − 2 also cannot be balanced by any other term unless it is actually ana-
lytic, that is 2a − 2 is an integer. The smallest possible value is a=3/2. The
velocity has then exponent 1/2, that is a square root behavior near S. This
is here derived under the assumption that F vanishes linearly near the
singular manifold. Otherwise a different scaling law may be obtained.

6. CONCLUSION

It is clear that the issue of finite-time blowup is still open for initially
smooth 3-D Euler flow (and also for 3-D Navier–Stokes flow). We have
here proposed investigating this issue within the more restricted class of
initially analytic flow, for which (hypothetical) real singularities are neces-
sarily preceded by singularities in complex space. For this purpose we
propose a new spectral adaptive strategy which requires the tracking of
complex singularities and the use, at suitable times, of a regularizing map
sending singularities too close to the real domain away from it.

Finally, we should mention that the issue of experimental study of 3-D
Euler blowup was discussed at the workshop. We noted the following: if a
flow is started by standard methods such as a moving grid, the ‘‘initial
conditions’’ will have considerable small-scale excitation (viscous boundary
layers generated at solid boundaries) and would in fact become singular
if this was extrapolated to zero viscosity. Alternative ways may be tried
where the flow is put in motion initially by body forces with no small-scale
component, such as electromagnetic or (ultra)sonic stirring.
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